Statistical Dependency Parsing in Korean: From Corpus Generation To Automatic Parsing
نویسندگان
چکیده
This paper gives two contributions to dependency parsing in Korean. First, we build a Korean dependency Treebank from an existing constituent Treebank. For a morphologically rich language like Korean, dependency parsing shows some advantages over constituent parsing. Since there is not much training data available, we automatically generate dependency trees by applying head-percolation rules and heuristics to the constituent trees. Second, we show how to extract useful features for dependency parsing from rich morphology in Korean. Once we build the dependency Treebank, any statistical parsing approach can be applied. The challenging part is how to extract features from tokens consisting of multiple morphemes. We suggest a way of selecting important morphemes and use only these as features to avoid sparsity. Our parsing approach is evaluated on three different genres using both gold-standard and automatic morphological analysis. We also test the impact of fine vs. coarse-grained morphologies on dependency parsing. With automatic morphological analysis, we achieve labeled attachment scores of 80%. To the best of our knowledge, this is the first time that Korean dependency parsing has been evaluated on labeled edges with such a large variety of data.
منابع مشابه
تأثیر ساختواژهها در تجزیه وابستگی زبان فارسی
Data-driven systems can be adapted to different languages and domains easily. Using this trend in dependency parsing was lead to introduce data-driven approaches. Existence of appreciate corpora that contain sentences and theirs associated dependency trees are the only pre-requirement in data-driven approaches. Despite obtaining high accurate results for dependency parsing task in English langu...
متن کاملAn improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کاملبررسی مقایسهای تأثیر برچسبزنی مقولات دستوری بر تجزیه در پردازش خودکار زبان فارسی
In this paper, the role of Part-of-Speech (POS) tagging for parsing in automatic processing of the Persian language is studied. To this end, the impact of the quality of POS tagging as well as the impact of the quantity of information available in the POS tags on parsing are studied. To reach the goals, three parsing scenarios are proposed and compared. In the first scenario, the parser assigns...
متن کاملبرچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملAutomatic Generation of Composite Labels Using Part-of-Speech Tags for Parsing Korean
We propose a format of a binary phrase structure grammar with composite labels. The grammar adopts binary rules so that the dependency between two sub-trees can be represented in the label of the tree. The label of a tree is composed of two attributes, each of which is extracted from each sub-tree, so that it can represent the compositional information of the tree. The composite label is genera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011